安全新卫士│采日能源故障预测系统再添领先技术!

安全新卫士│采日能源故障预测系统再添领先技术!

近日,采日能源储能设备新一代热失控预测技术成功研发,可大幅度降低用户的用能风险,给用户带来更安全的保障,与采日能源边缘计算设备MOFS,共同交付于后续的储能项目中。

故障预测系统是采日的核心技术产品之一,通过实时监测和分析储能系统的数据,提前发现潜在的故障,提高储能设备的可靠性和安全性。此次热失控预测技术的进化,能更精确,更提前地发现电池或设备中存在的问题,并及时采取行动防止事故发生,从而进一步提高储能设备的安全性。同时,该技术还可以帮助我们进行节能优化,避免能源浪费,提高效率。

安全新卫士│采日能源故障预测系统再添领先技术!

采日能源热失控技术建立实时、短期、长期的预警模型。采用迁移学习算法,充分利用多种电池类型、多工况下的案例数据,结果作为机器学习模型输入。该模型由域对抗网络和值对抗网络组成,从而训练出更具泛化能力的模型。为了解决不同工况下的温度偏移问题,通过智能算法,从SOC、SOH,不同类型的触发条件的维度模型训练,长期模拟运算,以及在设备上进行实际测试,其模拟和实测效果两方面验证理论逻辑,获得锂离子电池热失控风险量化结果。

与常规在云端部署的预测系统不同的是,采日能源故障预测系统可部署在采日能源边缘计算MOFS系统上,在本地进行数据采集、分析和决策,不必将数据传输到云端进行处理,进一步提高了预测的精确度和预测时间,又可降低了数据泄露和安全风险的可能性,真正达到实时预测系统,同时搭配可视化的数据分析工具,查看、分析不同组件之间信号流动、性能参数等,更好评估不同控制策略方案的效果。

安全新卫士│采日能源故障预测系统再添领先技术!

与此同时,故障预测系统与采日能源的微网优化调度系统、虚拟电力厂(VPP)调度系统集成部署在MOFS系统平台上,可对区域级,不同类型的储能设备及其他设备系统进行故障预测和分析,成为储能设备及大系统的超级安全卫士!

免责声明

               

本文转载自网络平台,发布此文仅为传递信息,本文观点不代表本站立场,版权归原作者所有;不代表赞同其观点,不对内容真实性负责,仅供用户参考之用,不构成任何投资、使用等行为的建议。请读者使用之前核实真实性,以及可能存在的风险,任何后果均由读者自行承担。

本网站提供的草稿箱预览链接仅用于内容创作者内部测试及协作沟通,不构成正式发布内容。预览链接包含的图文、数据等内容均为未定稿版本,可能存在错误、遗漏或临时性修改,用户不得将其作为决策依据或对外传播。

因预览链接内容不准确、失效或第三方不当使用导致的直接或间接损失(包括但不限于数据错误、商业风险、法律纠纷等),本网站不承担赔偿责任。用户通过预览链接访问第三方资源(如嵌入的图片、外链等),需自行承担相关风险,本网站不对其安全性、合法性负责。

禁止将预览链接用于商业推广、侵权传播或违反公序良俗的行为,违者需自行承担法律责任。如发现预览链接内容涉及侵权或违规,用户应立即停止使用并通过网站指定渠道提交删除请求。

本声明受中华人民共和国法律管辖,争议解决以本网站所在地法院为管辖法院。本网站保留修改免责声明的权利,修改后的声明将同步更新至预览链接页面,用户继续使用即视为接受新条款。

(0)
上一篇 2023-10-20 17:33
下一篇 2023-10-20 19:04

相关推荐

滇公网安备53010302001420